Vedecko/umelecko-pedagogická charakteristika osoby
Meno:
doc. RNDr. Pavel Bella, PhD.
Email:
pavel.bella@ku.sk
Homepage:
http://
Fakulta/Univerzita:
PF KU - Pedagogická fakulta Katolíckej univerzity v Ružomberku
Pracovisko:
KGE - Katedra geografie

I. - Základné údaje

I.1 - Priezvisko
Bella
I.2 - Meno
Pavel
I.3 - Tituly
doc., RNDr., PhD.
I.4 - Rok narodenia
1962
I.5 - Názov pracoviska
Katolícka univerzita v Ružomberku, Pedagogická fakulta
I.6 - Adresa pracoviska
Hrabovská cesta 1, 03104 Ružomberok
I.7 - Pracovné zaradenie
profesor
I.8 - E-mailová adresa
pavel.bella@ku.sk
I.9 - Hyperlink na záznam osoby v Registri zamestnancov vysokých škôl
https://www.portalvs.sk/regzam/detail/8010
I.10 - Názov študijného odboru, v ktorom osoba pôsobí na vysokej škole
38. Učiteľstvo a pedagogické vedy (zameranie na geografiu)
I.11 - ORCID iD
https://orcid.org/0000-0003-4875-1893

II. - Vysokoškolské vzdelanie a ďalší kvalifikačný rast

II.1 - Vysokoškolské vzdelanie prvého stupňa
II.2 - Vysokoškolské vzdelanie druhého stupňa
II.a - Názov vysokej školy alebo inštitúcie II.b - Rok II.c - Odbor a program
Univerzita Komenského v Bratislave, Prírodovedecká fakulta 1985 Geografia a kartografia
II.3 - Vysokoškolské vzdelanie tretieho stupňa
II.a - Názov vysokej školy alebo inštitúcie II.b - Rok II.c - Odbor a program
Univerzita Komenského v Bratislave, Prírodovedecká fakulta 2000 Fyzická geografia a geoekológia
II.4 - Titul docent
II.a - Názov vysokej školy alebo inštitúcie
Univerzita Komenského v Bratislave, Prírodovedecká fakulta
II.b - Rok
2010
II.c - Odbor a program
Fyzická geografia a geoekológia
II.5 - Titul profesor
II.6 - Titul DrSc.

III. - Súčasné a predchádzajúce zamestnania

III.a - Zamestnanie-pracovné zaradenie III.b - Inštitúcia III.c - Časové vymedzenie
zástupca riaditeľa, vedúci odborného úseku Slovenské múzeum ochrany prírody a jaskyniarstva, Liptovský Mikuláš 1990-1995
zástupca riaditeľa, vedúci úseku ochrany jaskýň Správa slovenských jaskýň, Liptovský Mikuláš 1995-2007
odborný asistent Katolícka univerzita v Ružomberku 2006-2010
docent Katolícka univerzita v Ružomberku 2010-2022
profesor Katolícka univerzita v Ružomberku od roku 2022

IV. - Rozvoj pedagogických, odborných, jazykových, digitálnych a iných zručností

IV.a - Popis aktivity, názov kurzu (ak išlo o kurz), iné IV.b - Názov inštitúcie IV.c - Rok
International Karstological School Karst Research Institute, Postojna, Slovenia 1996, 2006
Environmental education in protected areas Brecon Bacon National Park, Brecon, Wales, Great Britain 1999
Speleological School Uniwersytet Slaski, Sosnowiec, Poland 2001
International Workshop on Ice Caves (IWIC) International Union of Speleology (UIS) / Glacier, Firn and Ice Caves Commission 2004 (Capus, Romania), 2006 (Demänovská dolina, Slovakia), 2008 (Kungur, Russia), 2022 (Liptovský Mikuláš, Slovakia)

V. - Prehľad aktivít v rámci pedagogického pôsobenia na vysokej škole

V.1 - Prehľad zabezpečovaných profilových študijných predmetov v aktuálnom akademickom roku podľa študijných programov
V.1.a - Názov profilového predmetu V.1.b - Študijný program V.1.c - Stupeň V.1.d - Študijný odbor
Fyzická geografia 2 (Geomorfológia) Učiteľstvo geografie (v kombinácii) prvý stupeň (Bc.)
Fyzická geografia 3 (Klimageografia a hydrogeografia) Učiteľstvo geografie (v kombinácii) prvý stupeň (Bc:)
Geoekológia Učiteľstvo geografie (v kombinácii) druhý stupeň (Mgr.)
V.2 - Prehľad o zodpovednosti za uskutočňovanie, rozvoj a zabezpečenie kvality študijného programu alebo jeho časti na vysokej škole v aktuálnom akademickom roku
V.2.a - Názov študijného programu V.2.b - Stupeň V.2.c - Študijný odbor
Učiteľstvo geografie (v kombinácii) prvý stupeň (Bc.)
Učiteľstvo geografie (v kombinácii) druhý stupeň (Mgr.)
V.3 - Prehľad o zodpovednosti za rozvoj a kvalitu odboru habilitačného konania a inauguračného konania v aktuálnom akademickom roku
V.4 - Prehľad vedených záverečných prác
V.4.1 - Počet aktuálne vedených prác
V.4.a - Bakalárske (prvý stupeň)
1
V.4.b - Diplomové (druhý stupeň)
V.4.c - Dizertačné (tretí stupeň)
V.4.2 - Počet obhájených prác
V.4.a - Bakalárske (prvý stupeň)
47
V.4.b - Diplomové (druhý stupeň)
42
V.4.c - Dizertačné (tretí stupeň)
2
V.5 - Prehľad zabezpečovaných ostatných študijných predmetov podľa študijných programov v aktuálnom akademickom roku
V.5.a - Názov predmetu V.5.b - Študijný program V.5.c - Stupeň V.5.d - Študijný odbor
Kras a jaskyne Učiteľstvo geografie (v kombinácii) prvý stupeň (Bc.)

VI. - Prehľad výsledkov tvorivej činnosti

VI.1 - Prehľad výstupov tvorivej činnosti a ohlasov na výstupy tvorivej činnosti
VI.1.1 - Počet výstupov tvorivej činnosti
VI.1.a - Celkovo
649
VI.1.b - Za posledných šesť rokov
99
VI.1.2 - Počet výstupov tvorivej činnosti registrovaných v databázach Web of Science alebo Scopus
VI.1.a - Celkovo
54
VI.1.b - Za posledných šesť rokov
25
VI.1.3 - Počet ohlasov na výstupy tvorivej činnosti
VI.1.a - Celkovo
1581
VI.1.b - Za posledných šesť rokov
399
VI.1.4 - Počet ohlasov registrovaných v databázach Web of Science alebo Scopus na výstupy tvorivej činnosti
VI.1.a - Celkovo
508
VI.1.b - Za posledných šesť rokov
243
VI.1.5 - Počet pozvaných prednášok na medzinárodnej a národnej úrovni
VI.1.a - Celkovo
2
VI.1.b - Za posledných šesť rokov
0
VI.2 - Najvýznamnejšie výstupy tvorivej činnosti
ADD BOSÁK, P. – BELLA, P. – CÍLEK, V. – FORD, D. C. – HERCMAN, H. – KADLEC, J. – OSBORNE, A. – PRUNER, P. (2002). Ochtiná Aragonite Cave (Western Carpathians, Slovakia): Morphology, Mineralogy of the Fill and Genesis. Geologica Carpathica, 53, 6, 399–410.

ADC BELLA, P. – GAÁL, Ľ. – ŠUCHA, V. – KODĚRA, P. – MILOVSKÝ, R. (2016). Hydrothermal speleogenesis in carbonates and metasomatic silicites induced by subvolcanic intrusions: a case study from the Štiavnické vrchy Mountains, Slovakia. International Journal of Speleology, 45, 1, 11–25. http://dx.doi.org/10.5038/1827-806X.45.1.1879

ADC BELLA, P. – VESELSKÝ, M. – GAÁL, Ľ. – MINÁR, J. (2016). Jósvafő paleo-polje: morphology and relation to the landform evolution of Aggtelek Karst and Jósva River valley, Hungary. Zeitschrift für Geomorphologie, 60, 3, 219–235. http://doi.org/10.1127/zfg/2016/0212

ABC BELLA, P. – GAÁL, Ľ. (2017). Hypogene caves in Slovakia. In Klimchouk, A. – Palmer, A. – De Waele, J. – Aurel, A. – Audra, P. Eds. Hypogene Karst Regions and Caves of the World. Cave and Karst Systems of the World. Springer, Cham, 299311. https://dx.doi.org/10.1007/978-3-319-53348-3_19

ADC GRADZIŃSKI, M. – BELLA, P. – HOLÚBEK, P. (2018). Constructional caves in freshwater limestone: A review of their origin, classification, significance and global occurrence. Earth-Science Reviews, 185, 179–201. https://doi.org/10.1016/j.earscirev.2018.05.018

ABC BELLA, P. (2018). Ice surface morphology. In Perşoiu, A. – Lauritzen, S.-E. Eds. Ice caves. Elsevier, Amsterdam – Oxford – Cambridge, 69–96. https://doi.org/10.1016/B978-0-12-811739-2.00033-4

ADC BELLA, P. – GRADZIŃSKI, M. – HERCMAN, H. – LESZCZYŃSKI, S. – NEMEC, W. (2021). Sedimentary anatomy and hydrological record of relic fluvial deposits in a karst cave conduit. Sedimentology, 68, 1, 425–448. https://doi.org/ /10.1111/sed.12785

VI.3 - Najvýznamnejšie výstupy tvorivej činnosti za ostatných šesť rokov

ADC BELLA, P. – BOSÁK, P. – BRAUCHER, R. – PRUNER, P. – HERCMAN, H. – MINÁR, J. – VESELSKÝ, M. – HOLEC, J. – LÉANNI, L. (2019). Multi-level Domica–Baradla cave system (Slovakia, Hungary): Middle Pliocene–Pleistocene evolution and implications for the denudation chronology of the Western Carpathians. Geomorphology, 327, 62–79. https://doi.org/10.1016/ j.geomorph.2018.10.002

ADC BELLA, P. – BOSÁK, P. – MIKYSEK, P. – LITTVA, J. – HERCMAN, H. – PAWLAK, J. (2019). Multi-phased hypogene speleogenesis in a marginal horst structure of the Malé Karpaty Mountains, Slovakia. International Journal of Speleology, 48, 2, 203–220. https://doi.org/10.5038/1827-806X.48.2.2265

ADC BELLA, P. – HERCMAN, H. – KDÝR, Š. – MIKYSEK, P. – PRUNER, P. – LITTVA, J. – MINÁR, J. – GRADZIŃSKI, M. – WRÓBLEWSKI, W. – VELŠMID, M. – BOSÁK, P. (2022). Sulfuric acid speleogenesis and surface landform evolution along the Vienna Basin Transfer Fault: Plavecký Karst, Slovakia. International Journal of Speleology, 51, 2, 105–122. https://doi.org/10.5038/1827-806X.51.2.2420

ADC BELLA, P. – BOSÁK, P. – PRUNER, P. – HERCMAN, H. – PUKANSKÁ, K. – BARTOŠ, K. – GAÁL, Ľ. – HAVIAROVÁ, D. – TOMČÍK, P. – KDÝR, Š. (2022). Speleogenesis in a lens of metamorphosed limestone and ankerite: Ochtiná Aragonite Cave, Slovakia. International Journal of Speleology, 51, 1, 13-28. https://doi.org/10.5038/1827-806X.51.1.2397

ADC Sala, P. – Bella, P. – Szczygieł, J. – Wróblewski, W. – Gradziński, M. (2022). Healed speleothems: A possible indicator of seismotectonic activity in karst areas. Sedimentary Geology, 430, 106105. https://doi.org/10.1016/j.sedgeo.2022.106105

ADC Sala, P. – Bella, P. – Postawa, T. – Wróblewski, W. – Gradziński, M. (2023). Corrosion of carbonate speleothems by bat guano. Sedimentary Geology, 454, 106454. https://doi.org/10.1016/j.sedgeo.2023.106454

ADC Hercman, H. – Gąsiorowski, M. – Szczygieł, J. – Bella, P. – Gradziński, M. – Błaszczyk, M. – Matoušková, Š. – Pruner, P. – Bosák, P. (2023). Delayed valley incision due to karst capture (Demänová Cave System, Western Carpathians, Slovakia). Geomorphology, 437, 108809. https://doi.org/10.1016/j.geomorph.2023.108809

ADC Wróblewski, W. – Bella, P. – Drewnik, M. – Duliński, M. – Gradziński, M. – Motyka, J. – Nęcki, J. – Sala, P. (2024). Mixing of endogenous CO2 and meteoric H2O causes extremely efficient carbonate dissolution. Science of the Total Environment, 936, 173347. https://doi.org/10.1016/j.scitotenv.2024.173347

VI.4 - Najvýznamnejšie ohlasy na výstupy tvorivej činnosti

ADC BELLA, P. – BOSÁK, P. – BRAUCHER, R. – PRUNER, P. – HERCMAN, H. – MINÁR, J. – VESELSKÝ, M. – HOLEC, J. – LÉANNI, L. (2019). Multi-level Domica–Baradla cave system (Slovakia, Hungary): Middle Pliocene–Pleistocene evolution and implications for the denudation chronology of the Western Carpathians. Geomorphology, 327, 62–79. https://doi.org/10.1016/ j.geomorph.2018.10.002

[1] AUDRA, P. – DE WAELE, J. – BENTALEB, I. – CHROŇÁKOVÁ, A. – KRIŠTŮFEK, V. – D’ANGELI, I. M. – CARBONE, C. – MADONIA, G. – VATTANO, M. – SCOPELLITI, G. – CAILHOL, D. – VANARA, N. – TEMOVSKI, M. – BIGOT, J.-Y. – NOBÉCOURT, J.-C. – GALLI, E. – RULL, F. – SANZ-ARRANZ, A. (2019). Guano-related phosphate-rich minerals in European caves. International Journal of Speleology, 48, 1, 75–105. (WoS, SCOPUS) [1] ARRIOLABENGOA, M. – HERMOSO DE MENDOZA, A. – VÍCTOR, A. – ÁLVAREZ, I. – ARANBURU, A. – BODEGO, A. – CALVO, J. I. – DEL VAL, M. – GARATE, D. – IBARRA, F. – IRIARTE, E. – LEGARREA, J. – TAPIA, J. – AGIRRE-MAULEON, J. (2019). Sistema kárstico multi-nivel Alkerdi-Zelaieta (Urdazubi/Urdax, Navarra): bajada del nivel freático frente a la (re)sedimentación. Geogaceda, 66, 7–10. (SCOPUS) [1] TELBISZ, T. – GRUBER, P. – MARI, L. – KŐSZEGI, M. – BOTTLIK, Z. – STANDOVÁR, T. (2020). Geological Heritage, Geotourism and Local Development in Aggtelek National Park (NE Hungary). Geoheritage, 12, 1, 5. (WoS, SCOPUS) [1] NEHME, C. – FARRANT, A. – TODISCO, D. – RODET, J. – SAHY, D. – GRAPPONE, J. M. – STAIGRE, J.-C. – MOURALIS, D. (2020). Reconstructing fluvial incision rates based on palaeo‐water tables in chalk karst networks along the Seine valley (Normandy, France). Earth Surface Processes and Landforms, 45, 8, 1860–1876. (WoS, SCOPUS) [1] RUSZKICZAY-RÜDIGER, Zs. – BALÁZS, A. – CSILLAG, G. – DRIJKONINGEN, G. – FODOR, L. (2020). Uplift of the Transdanubian Range, Pannonian Basin: How fast and why? Global and Planetary Change, 192, 103263. (WOS, SCOPUS) [2] NEUHUBER, S. – PLAN, L. – GIER, S. – HINTERSBERGER, E. – LACHNER, J. – SCHOLZ, D. – LŰTHGENS, C. – BRAUMANN, S. – BODENLENZ, F. – VOIT, K. – FIEBIG, M. (2020). Numerical age dating of cave sediments to quantify vertical movement at the Alpine-Carpathian transition in the Plio- and Pleistocene. Geologica Carpathica, 71, 6, 539–557. (WoS, SCOPUS) [1] COLUMBU, A. – AUDRA, P. – GÁZQUEZ, F. – D´ANGELI, I. M. – BIGOT, J.-Y. – KOLTAI, G. – CHIESA, R. – YU, T.-L.- HU, H.-M. – SHEN, C.-C. – CARBONE, C. – HERESANU, V. – NOBÉCOURT, J.-C. – DE WAELE, J. (2021). Hypogenic speleogenesis, late stage epigenic overprinting and condensation-corrosion in a complex cave system in relation to landscape evolution (Toirano, Liguria, Italy). Geomorphology, 376, 107561 (WoS, SCOPUS) [1] BÓGALO, M. F. – BRADÁK, B. – VILLALAÍN, J. J. – CALVO-RATHERT, M. – GONZÁLEZ, M. I. – HELLER, F. – ORTEGA, A. I. – PARÉS, J. M. (2021). High-resolution late Middle Pleistocene paleoclimatic record from the Galería Complex, Atapuerca archaeological site, Spain – An environmental magnetic approach. Quaternary Science Reviews, 251, 106721. (WoS, SCOPUS) [1] BRADÁK, B. – CARRANCHO, Á. – LAGUNILLA Á. H. – VILLALAÍN, J. J. – MONNIER, G. F. – TOSTEVIN, G. – MALLOL, C. – PAJOVIĆ, G. – BAKOVIĆ, M. – BOROVINIĆ, N. 2021. Magnetic fabric and archaeomagnetic analyses of anthropogenic ash horizons in a cave sediment succession (Crvena Stijena site, Montenegro). Geophysical Journal International, 224, 2, 795–812. (WoS, SCOPUS) [1] SAURO. F. – FELLIN, M. G. – COLUMBU, A. – HÄUSELMANN. P. – BORSATO, A. – CARBONE. C. – DE WAELE, J. (2021). Hints on the Late Miocene Evolution of the Tonale-Adamello-Brenta Region (Alps, Italy) Based on Allochtonous Sediments From Raponzolo Cave. Frontiers in Earth Science / Quaternary Science, Geomorphology and Paleoenvironment, 9, 672119. https://doi.org/ 10.3389/feart.2021.672119. (WoS, SCOPUS) [2] PIVKO, D. – VOJTKO, R. (2021). A review of travertines and tufas in Slovakia: Geomorphology, environments, tectonic pattern, and age distribution. Acta Geologica Slovaca, 13, 1, 49–78. (SCOPUS) [1] UCAR, H. – KLETETCHKA, G. – KADLEC, J. (2021). Evidence of Matuyama-Brunhes transition in the cave sediment in Central Europe. Quaternary International, 604, 16–27. https://doi.org/10.1016/ j.quaint.2021.07.005 (WoS, SCOPUS) [2] MARKO, F. – WOODHEAD, J. – SCHOLZ, D. – HURAI, V. – LAČNÝ, A. (2022). 238U/206Pb age of the fossil sinter crust (flowstone) covering fault walls of a Badenian neptunian dyke (Devín quarry, Western Carpathians). Geologica Carpathica, 73, 2, 173178. (WoS, SCOPUS) [1] RIXHON, G. (2023). Deeper underground: Cosmogenic burial dating of cave-deposited alluvium to reconstruct long-term fluvial landscape evolution. Earth-Science Reviews, 239, 104357. (WoS, SCOPUS) [1] Temovski, M. – Wieser, A. – Marchhart, O. – Braun, M. – Madarász, M. – Kiss, G. I. – Palcsu, L. – Ruszkiczay-Rüdiger, Z. (2023). Pleistocene valley incision, landscape evolution and inferred tectonic uplift in the central parts of the Balkan Peninsula -Insights from the geochronology of cave deposits in the lower part of Crna Reka basin (N. Macedonia). Geomorphology, 445, 108994. (WoS, SCOPUS) [1] Stroj, A. – Lacković, D. – Sasowsky, I. D. – Bajo, P. – Glumac, B. (2023). The application of cave morphological and sedimentary deposit investigations to unravel tectonic history and landscape evolution: Insights from Veternica Cave, Medvednica Mountain, Croatia. Geomorphology, 446, 109000. (WoS, SCOPUS) [1] Telbisz, T. – Mari, L. – Székely, B. (2024). LiDAR-Based Morphometry of Dolines in Aggtelek Karst (Hungary) and Slovak Karst (Slovakia). Remote Sensing, 16, 5, 737. (WoS, SCOPUS) [1] Temovski, M. – Ruszkiczay-Rüdiger, Z. – Molnár, K. – Rinyu, L. – Wieser, A. – Marchhart, O. – Palcsu, L. (2024). Constraining the evolutionary stages of a hypogene karst system by combining morphological, geochemical and geochronological data – the example of carbonate breccia-hosted Melnička Peštera. International Journal of Speleology, 53, 2, 169–190. (WoS, SCOPUS) [1] Kudla, M. – Javorská, M. – Vašková, J. – Čech, V. – Tometzová, D. (2024). Inventory and Evaluation of Geosites: Case Studies of the Slovak Karst as a Potential Geopark in Slovakia. Sustainability, 16 (17), 7783. (WoS, SCOPUS) [1] Calvet, M. – Gunnell, Y. – Delmas, M. – Braucher, R. – Jaillet, S. – Häuselmann, P. – Delunel, R. – Sorriaux, P. – Valla, P. G. – Audra, P. (2024). Valley incision chronologies from alluvium-filled cave systems. Earth-Science Reviews, 104963. (WoS, SCOPUS)

ADC GRADZIŃSKI, M. – BELLA, P. – HOLÚBEK, P. (2018). Constructional caves in freshwater limestone: A review of their origin, classification, significance and global occurrence. Earth-Science Reviews, 185, 179–201. https://doi.org/10.1016/j.earscirev.2018.05.018

[1] MYLROIE, J. (2019). Caves in space. Journal of Cave and Karst Studies, 81, 1, 25–32. (WOS, SCOPUS) [1] KHOSHRAFTAR, R. – TORABI FARSANI, N. (2019). Geomythology: an Approach for Attracting Geotourists (Case Study: Takht-e Soleymān – Takab World Heritage Sites). Geoheritage, 11, 4, 1879–1888. (WoS, SCOPUS) [1] YIGUO XUE – FANMENG KONG – DAOHONG QIU – MAOXIN SU – YING ZHAO – KAI ZHANG (2021). The classifications of water and mud/rock inrush hazard: a review and update. Bulletin of Engineering Geology and the Environment, 80, 3, 1907–1925. (WoS, SCOPUS) [1] LUO, L. – WEN, H. – CAPEZZUOLI, E. (2021). Travertine deposition and diagenesis in Ca-deficiency perched hot spring systems: A case from Shihuadong, Tengchong, China. Sedimentary Geology, 414, 105827. (WoS, SCOPUS) [1] ALONSO-ZARZA, A. M. – CASILLAS, R. – RODRÍGUEZ-BERRIGUETE, A. (2021). Landscape modification due to agricultural irrigation: carbonate tufa formation on Tenerife, Canary Islands, Spain. Anthropocene, 34, 100285. (WoS, SCOPUS) [2] PIVKO, D. – VOJTKO, R. (2021). A review of travertines and tufas in Slovakia: Geomorphology, environments, tectonic pattern, and age distribution. Acta Geologica Slovaca, 13, 1, 49–78. (SCOPUS) [1] BROGI, A. – CAPEZZUOLI, E. – KARABACAK, V. – ALCICEK, M. C. – LUO. L. (2021). Fissure Ridges: A Reappraisal of Faulting and Travertine Deposition (Travitonics). Geosciences, 11, 278. https://doi.org/10.3390/geosciences11070278 (WoS, SCOPUS) [1] LUO, L. – CAPEZZUOLI, E. – VASELI, O. – WEN, H. – LAZZARONI, M. – LU, Z. – MELONI, F. – KELE, S. (2021). Factors governing travertine deposits in fluvial sediments: the Bagni San Filippo (central Italy) case study. Sedimentary Geology, 426, 106023. (WoS, SCOPUS) [1] LUO, L. – WEN, H. – BROGI, A. – CAPEZZUOLI, E. (2021). Factors controlling the geometry of travertine mounds: Insights from Heinitang (China). Sedimentology, https://doi.org/10.1111/ sed.12961 (WoS, SCOPUS) [2] PIVKO, D. (2021). A review of Slovak travertine and tufa facies and their environment. Acta Geologica Slovaca, 13, 2, 129–166. (SCOPUS) [1] AZENNOUD, K. – BAALI, A. – BRAHIM, A. B. – AHONAUCH, Y. - HAKAM, O. (2022). Climate controls on tufa deposition over the last 5000 years: A case study from Northwest Africa. Palaeogeography, Palaeoclimatology, Palaeoecology, 586, 1, 110767. (WoS, SCOPUS) [1] DINIZ, J. L. - TOGNOLI, F. M. W. - CLAES, H. - MIRANDA, T. S. - NEUMANN, V. H. M. L. - SIAL, A. N. - INOCENCIO, C. I. - SOUZA, L. V. (2022). Tufa associated with karst features in a fracture-system fed by meteoric water, Araripe basin, NE Brazil. Journal of South American Earth Sciences, 115, 103772. (WoS, SCopus) [1] LAZARIDIS, G. (2022). Definition and process-based classification of caves. Acta Carsologica, 51, 1, 65–77. (WoS, SCOPUS) [1] Polyak, V. J. – Forbes, J. – Spilde, M. – Provencio, P. – Cochran, J. – Asmeron, Y. (2024). CO2 hypogene speleogenesis in an endogenic travertine system, Mesa del Oro, New Mexico, USA. International Journal of Speleology, 53, 2, 159167. (WoS, SCOPUS) [1] Tyc, A. –Gaidzik, K. – Ciesielczuk, J. – Wątor, K. (2024). Manifestations of sulfuric acid speleogenesis in the Mulapampa travertine, Central Andes of Peru: evidence from the Gruta con Lago. International Journal of Speleology, 53, 2, 235251. (WoS, SCOPUS) [1] Azennoud, K. – Brahim, Y. A. – Baali, A. – Lechleitner, F. A. – El Asmi,  H. – Li, X. – Edwards, R. L. – Peros, M. (2024). Tufas record significant imprints of climate and tectonic activity over the past 600 ka: Evidence from a multi-story wedge in Northwest Africa. Sedimentary Geology, 474, 106769. (WoS, SCOPUS) [1] Yang, H. – Wu, X. – Cui, H. – Wang, W. – Cheng, Y. – Gong, X. – Luo, X. – Lin, Q. (2024). Formation Mechanism of Muji Travertine in the Pamirs Plateau, China. Minerals, 14, 1192. (WoS, SCOPUS)

ADC Bella, P. – Gradziński, M. – Hercman, H. – Leszczyński, S. – Nemec, W. (2021).  Sedimentary anatomy and hydrological record of relic fluvial deposits in a karst cave conduit. Sedimentology, 68, 1, 425–448. https://doi.org/ /10.1111/sed.12785

[1] Nannoni, A. – Piccini, L. – Costagliola, P. – Batistoni, N. – Gabellini, P. – Cioni, R. – Pratesi, G. – Bucci, S. (2021). Innovative Approaches for the Sedimentological Characterization of Fine Natural and Anthropogenic Sediments in Karst Systems: The Case of the Apuan Alps (Central Italy). Frontiers in Earth Science / Quaternaey Science, Geomorphology and Paleoenvironment. (WoS, SCOPUS) [1] Lønøy, B. – Pennos, C. – Tveranger, J. – Fikos, I. – Vargemezis,G. – Lauritzen, S.-E. (2021). Delimiting morphological and volumetric elements of cave surveys as analogues for paleokarst reservoir modelling – A case study from the Maaras cave system, northern Greece. Marine and Petroleum Geology, 129, 105091. (WoS, SCOPUS) [1] Pawlak, J. (2021). The speleothem oxygen record as a proxy for thermal or moisture changes: a case study of multiproxy records from MIS 5–MIS 6 speleothems from the Demänová Cave system. Climate of the Past, 17, 3, 1051–1064. (WoS, SCOPUS) [1] Kicińska, D. (2021). Origin of fine-grained clastic sediments in caves of the Hoher Göll massif (the Northern Calcareous Alps, Austria). Annales Societatis Geologorum Poloniae, 91, 4, 359–367. (WoS) [1] Kampolis, I. – Triantafyllidis, S. – Skliros, V. – Kamperis, E. (2022). Quaternary Evolutionary Stages of Selinitsa Cave (SW Peloponnese, Greece) Reveal Sea-Level Changes Based on 3D Scanning, Geomorphological, Biological, and Sedimentological Indicators. Quaternary, 5, 24. (WoS, SCOPUS) [2] Marko, F. – Woodhead, J. – Scholz, D. – Hurai, V. – Lačný, A. (2022). 238U/206Pb age of the fossil sinter crust (flowstone) covering fault walls of a Badenian neptunian dyke (Devín quarry, Western Carpathians). Geologica Carpathica, 73, 2, 173178. (WoS, SCOPUS) [1] Miao, W. – Xu,  Y. – Guo, Y. – Zhang, E. – Zhuo, Y. – Huang, L. – Ma, Z. – Liang, S. (2022). The Hydrogeological Characteristics of Thick Alluvium with High Water Level and the Influence on Zhaogu Mining Area, Henan Province, China. Geofluids, 2022, 447145, 15 p. (WoS, SCOPUS) [1] Kicińska, D. – Michniewicz, J. – Kubiak, M. (2023). Manganese pebbles from Hochschartehöhlesystem (the Hoher Göll Massif, Austria): insight into potential genesis and provenance. Annales Societatis Geologorum Poloniae, 93, 2, 211–223. (WoS, SCOPUS) [1] Ballesteros, D. – Farrant, A. – Sahy, D. – Genuite, G. – Nehme, C. (2023). Going with the flow: Sedimentary processes along karst conduits within Chalk aquifers, northern France. Sedimentary Geology, 452, 106422. (WoS, SCOPUS) [1] Kicińska, D. – Pawlak, J. – Stienss, J. (2023). An attempt to identify source areas of clastic deposits from selected caves of the Prokletije Mountains (Montenegro): a mineralogical and U-series geochemistry approach. International Journal of Speleology, 52, 2, 109–122.(WoS, SCOPUS) [1] Simms, M. J. – Drost, K. (2024). Caves, dinosaurs and the Carnian Pluvial Episode: Recalibrating Britain’s Triassic karst ‘fissures’. Palaeogeography, Palaeoclimatology, Paleoecology, 368, 112041. (WoS, SCOPUS) [1] Skoglund, R. Ø. – Lauritzen, S.-E. – Hestangen, H. – Skutlaberg, S. – Pennos, C. (2024). Influence of the last (de)glaciation on a complex cave system: Grønli-Seter cave system, Northern Norway. Geomorphology, 455, 1–4, 1091878. (WoS, SCOPUS) [1] Liao, W. – Tian, C. – Liang, H. – Yao, Y. – Li, J. – Yan, Y. – Huang, S. – Bae, C. J. – Wang, W. (2024). Provenance geochemical detection of soil deposits from archaeological limestone caves in the Bubing Basin, tropical China. Quaternary International, 109580. (WoS, SCOPUS) 

ADC BELLA, P. – GAÁL, Ľ. – ŠUCHA, V. – KODĚRA, P. – MILOVSKÝ, R. (2016). Hydrothermal speleogenesis in carbonates and metasomatic silicites induced by subvolcanic intrusions: a case study from the Štiavnické vrchy Mountains, Slovakia. International Journal of Speleology, 45, 1, 11–25. http://dx.doi.org/10.5038/1827-806X.45.1.1879

[1] CÉSAR ULISSES VIEIRA VERÍSSIMO – ROBERTO VENTURA SANTOS – CLÓVIS VAZ PARENTE – CLAUDINEI GOUVEIA DE OLIVEIRA – JOSÉ ADILSON DIAS CAVALCANTI – JOSÉ DE ARAÚJO NOGUEIRA NETO (2016). The Itataia phosphate-uranium deposit (Ceará, Brazil) new petrographic, geochemistry and isotope studies. Journal of South American Earth Sciences, 70, 115–144. (WoS, SCOPUS) [1] HARLEY, T. L. – WESTAWAY, R. – McCAY, A. T. (2017). Gamma-ray spectrometry in the field: Radioactive heat production in the Central Slovakian Volcanic Zone. Journal of Volcanology and Geothermal Research, 338, 1–24. (WoS, SCOPUS) [1] GRADZIŃSKI, M. – TYC, A. (2017). Hypogene Speleogenesis in the Karst of Poland – Regional Review. In Klimchouk, A. – Palmer, A. – De Waele, J. – Aurel, A. – Audra, P. Eds. Hypogene Karst Regions and Caves of the World. Cave and Karst Systems of the World. Springer, Cham, 349–362. (WoS) [1] DAVIS, N. K. – McMILLAN, B. A. (2017). Geology of Quartz-Lined Hypogene Caves of Southeastern Arizona. In Klimchouk, A. – Palmer, A. – De Waele, J. – Aurel, A. – Audra, P. Eds. Hypogene Karst Regions and Caves of the World. Cave and Karst Systems of the World. Springer, Cham, 543–554. (WOS) [1] KLIMCHOUK, A. B. – AMELICHEV, G. N. – CHERVYATSOVA, O. Y. – TOKAREV, S. V. – KISELEVA, D. V. – POTAPOV, S. S. (2021). Ferruginous accumulations in hypogene karst conduits of Crimean Piedmont: Evidence for a deep iron source for the Kerch-Taman iron-ore province, north Black Sea region. Marine and Petroleum Geology, 127, 104954. (WoS, SCOPUS) [1] Kaminskaite-Baranauskiene, I. – Wang, H. – Li, H. (2023). Geothermal carbonate reservoirs and their sustainability: what can natural hydrothermal systems tell us? Geothermics, 114, 102798. (WoS, SCOPUS)   

ADD BOSÁK, P. – BELLA, P. – CÍLEK, V. – FORD, D. C. – HERCMAN, H. – KADLEC, J. – OSBORNE, A. – PRUNER, P. (2002). Ochtiná Aragonite Cave (Western Carpathians, Slovakia): Morphology, Mineralogy of the Fill and Genesis. Geologica Carpathica, 53, 6, 399–410.

[1] BARTON, H. A. – NORTHUP, D. E. (2007). Geomicrobiology in cave environments: Past, current and future perspectives. Journal of Cave and Karst Studies, 69, 1, 163–178. (WoS, SCOPUS) [1] JONES, B. (2010). The preferential association of dolomite with microbes in stalactites from Cayman Brac, British West Indies. Sedimentary Geology, 226, 1–4, 94–109. (WoS, SCOPUS) [1] JONES, B. (2010). Speleothems in a wave-cut notch, Cayman Brac, British West Indies: The integrated product of subaerial precipitation, dissolution, and microbes. Sedimentary Geology, 232, 1–2, 15–34. (WoS, SCOPUS) [1] LAVOIE, H. H. – NORTHUP, D. E. – BARTON, A. H. (2010). Microbe-Mineral Interaction: Cave Geomicrobiology. In Sudhir, K. J. – Abdul, A. K. – Mahendra, K. R. Eds. Geomicrobiology. Science Publishers, CRC Press, 1–46. (SCOPUS) [1] ALONSO-ZARZA, A. M. – MARTÍN-PÉREZ, A. – MARTÍN-GARCÍA, R. – GIL-PEÑA, I. – MELÉNDEZ, A. – MARTÍNEZ-FLORES, E. – HELLSTROM, J. – MUÑOZ-BARCO, P. (2011). Structural and host rock controls on the distribution, morphology and mineralogy of speleothems in the Castañar Cave (Spain). Geological Magazine, 148, 2, 211–225. (WoS, SCOPUS) [1] MARTÍN-GARCÍA, R. – MARTÍN-PÉREZ, A. – ALONSO-ZARZA, A. M. (2011). Weathering of host rock and corrosion over speleothems in Castañar cave, Spain: An example of a complex meteoric environment. Carbonates and Evaporites, 26, 1, 83–94. (WoS, SCOPUS) [1] AUREL, A. S. (2013). Sources of Water Aggressiveness – The Driving Force of Karstification. Treatise on Geomorphology, Vol. 6, 23–28. (SCOPUS) [1] FORD, D. C. – WILLIAMS, P. W. (2013). Karst Geomorphology and Hydrogeology. John Wiley and Sons Ltd., 562 p. (SCOPUS) [1] PENG, X. – JONES, B. (2013). Patterns of biomediated CaCO3 crystal bushes in hot spring deposits. Sedimentary Geology, 294, 105–117. (WoS, SCOPUS) [1] JONES, B. – PENG, X. (2014). Signatures of biologically influenced CaCo3 and Mg-Fe silicate precipitation in hot springs: Case study from the ruidian geothermal area, western Yunnan province, China. Sedimentology, 61, 1, 56–89. (WoS, SCOPUS) [1] JONES, B. – PENG, X. (2014). Hot spring deposits on a cliff face: A case study from Jifei, Yunnan Province, China. Sedimentary Geology, 302, 1–28. (WoS, SCOPUS) [1] MARTÍN-GARCÍA, R. – ALONSO-ZARZA, A. M. – MARTÍN-PÉREZ, A. – SCHRÖDER-RITZRAU, A. – LUDWIG, T. (2014). Relationships between colour and diagenesis in the aragonite-calcite speleothems in Basajaún Etxea cave, Spain. Sedimentary Geology, 312, 63–75. (WoS, SCOPUS) [1] KRIL, S. Y. – TSIKHON, S. I. (2014). Physical-chemical conditions of generation of aragonite in Cretaceous deposits in the southeast Ukrainian Carpathians. Naukovyi Visnyk Natsionalnoho Himychoho Universytetu, 2, 23–29. (SCOPUS) [1] DAZA, R. – BUSTILLO, M. A. (2015). Allophanic and ferric root-associated stalactites: Biomineralization induced by microbial activity (Galeria da Queimada lava tube, Terceira, Azores). Geological Magazine, 152, 3, 504–520. (WoS, SCOPUS) [1] SPÖTL, C. – DESCH, A. – DUBLYANSKY, Y. – PLAN, L. – MANGINI, A. (2016). Hypogene speleogenesis in dolomite host rock by CO2-rich fluids, Kozak Cave (southern Austria). Geomorphology, 255, 39–48. (WoS, SCOPUS) [1] KOTULA, P. – ANDREYCHOUK, V. – PAWLYTA, J. – MARYNOWSKI, L. – JENDRZEJEWSKA, I. (2019). Genesis of iron and manganese sediments in Zoloushka Cave (Ukraine/Moldova) as revealed by δ13C organic carbon. International Journal of Speleology, 48, 3, 221-235. (WoS, SCOPUS) [1] FONOLLÁ, C. – EUGENIO SANZ, E. – MENÉNDEZ-PIDAL, I. (2020). Lateral ferruginous groundwater transfer as the origin of the iron crusts in caves: A case study. Journal of Cave and Karst Studies, 82, 3, 183–197. (WoS, SCOPUS) [2] MARKO, F. – WOODHEAD, J. – SCHOLZ, D. – HURAI, V. – LAČNÝ, A. (2022). 238U/206Pb age of the fossil sinter crust (flowstone) covering fault walls of a Badenian neptunian dyke (Devín quarry, Western Carpathians). Geologica Carpathica, 73, 2, 173178. (WoS, SCOPUS) [1] BRIESTENSKÝ, M. – AMBROSINO, F. – SMETANOVÁ, I. – THINOVÁ, L. – ŠEBELA, S. – STEMBERK, J. – PRISTAŠOVÁ, L. – PLA, C. – BENAVEE, D. (2022). Radon in dead-end caves in Europe. Journal of Cave and Karst Studies, 84, 2, 41–50. (WoS, SCOPUS) [1] Kicińska, D. – Michniewicz, J. – Kubiak, M. (2023). Manganese pebbles from Hochschartehöhlesystem (the Hoher Göll Massif, Austria): insight into potential genesis and provenance. Annales Societatis Geologorum Poloniae, 93, 2, 211–223. (WoS, SCOPUS)

VI.5 - Účasť na riešení (vedení) najvýznamnejších vedeckých projektov alebo umeleckých projektov za posledných šesť rokov
Geochronológia jaskynných úrovní a rekonštrukcia vývoja reliéfu Západných Karpát. Grantový projekt VEGA č. 1/0430/15, doba riešenia: 2015 – 2017, vedúci projektu. Poznatky o jaskynných úrovniach sú dôležité z nielen hľadiska rekonštrukcie vývoja jaskýň, ale aj reliéfu krasových území a priľahlých oblastí. Moderné geochronologické metódy umožňujú datovať vek sedimentov z jaskynných úrovní (na povrchu sa sedimenty zo starých fáz vývoja reliéfu väčšinou nezachovali). Preto sa projekt zameriaval na doplnenie údajov o veku jaskynných úrovní a interprertáciu výsledkov vo vzťahu k vývoju reliéfu príslušných oblastí Západných Karpát (riečne terasy, zarovnané povrchy). Výskum sa realizoval v krasových územiach, ktoré patria do morfoštruktúrnych regiónov s odlišným neotektonickým a geomorfologickým vývojom. Okrem morfometrických a morfogenetických analýz sa využili viaceré metódy datovania jaskynných sedimentov (paleomagnetické, rádiometrické, OSL, kozmogénne nuklidy, palynologické analýzy).
Vek, rozsah a hĺbka epizodického topenia permafrostu počas neskorého pleistocénu – údaje z jaskynných klimatických archívov Slovenska. Grantový projekt VEGA č. 2/0193/15, doba riešenia: 2015 – 2017, zástupca vedúceho projektu. V súčasnej dobe výrazných klimatických zmien rastie význam paleoklimatických štúdií z obdobia kvartéru, založených na precíznych geochemických záznamoch (oceánske a ľadovcové vrty, koraly, speleotémy). V posledných rokoch k nim pribudol kryogénny jaskynný karbonát (CCC). Jeho použitie ako klimatického indikátora si však vyžaduje poznanie procesov jeho vzniku. V porovnaní s ostatnými geochemickými archívmi dokáže zaznamenať topenie permafrostu i hĺbku, v ktorej k nemu dochádza. Tým je mimoriadne dôležitý z hľadiska globálneho vývoja klímy, keďže destabilizácia klatrátov únik metánu do atmosféry pri ústupe permafrostu sa pokladá za jeden zo spúšťačov globálnych oteplení. Projekt sa zameral na analýzu mechanizmu a časovania jaskynného zaľadnenia vzhľadom na globálne klimatické výkyvy s cieľom vypracovať z CCC robustný nástroj na zmapovanie rozsahu a hrúbky permafrostu v rôznych obdobiach würmského glaciálu.
Uszkodzone nacieki jaskiniowe jako zapis aktywności sejsmicznej w Centralnych Karpatach Zachodnich. National Science Centrum, Poland, Krakow, projekt Nr. 2017/25/B/ST10/01430, doba riešenia: 2018 – 2020, riešiteľ projektu. Zemetrasenia sú jedným z mála geologických javov, ktoré možno zaznamenať a cítiťčlovekom. Predstavujú tiež potenciálnu hrozbu, najmä v určitých oblastiach zemegule. V Karpatoch boli a sú zaznamenané zemetrasenia, čo súvisí s geologickou stavbou a procesmi prebiehajúcimi v hĺbke tohto pohoria. História zemetrasení v tejto oblasti sa vedie len na základe meraní a historických záznamov, teda len v relatívne nedávnej minulosti. Cieľom projektu bol záznam starých zemetrasení, ktoré sú zaznamenané v podobe poškodenia kvapľových útvarov v jaskyniach Poľska a Slovenska. Tým možno určiť vek a frekvenciu zemetrasení za posledných niekoľko stoviek tisíc rokov.
Pliocénno-pleistocénna denudačná chronológia Západných Karpát zaznamenaná v jaskyniach. Grantový projekt VEGA č. 1/0146/19, doba riešenia: 2019 – 2022, vedúci projektu. Jaskyne sú vhodným objektom výskumu zameraného na rekonštrukciu vývoja reliéfu. Jaskynné úrovne sa rovnako ako riečne terasy, pedimenty či zarovnané povrchy vytvárajú vzhľadom na stabilnú eróznu bázu na povrchu. V členitom teréne sa však sedimenty zo starších vývojových fáz reliéfu zachovali zväčša iba v jaskyniach. Datovanie jaskynných sedimentov modernými geochronologickými metódami (metóda kozmogénnych nuklidov 10Be a 26Al, rádioizotopové metódy U-series, paleomagnetické a magnetostratigrafické metódy, metóda OSL) umožňuje bližšie určiť vek jaskynných úrovní. Keďže ich vývoj sa koreluje s riečnymi terasami, pedimentmi alebo zarovnanými povrchmi, jaskynné úrovne sú dôležitými markermi vývoja reliéfu. Projekt sa zameriava na doplnenie údajov o veku jaskynných úrovní a ich súbornú interpretáciu vo vzťahu ku geochronológii vývoja reliéfu Západných Karpát v pliocéne a pleistocéne (fázy planácie reliéfu a zahlbovania riečnej siete, paleodenudačné rýchlosti, rozsah a intenzita zahlbovania dolín).

Speleogenetické markery vývoja reliéfu Západných Karpát. Grantový projekt VEGA č. 1/0323/23. Pedagogická fakulta, KU Ružomberok. Doba riešenia: 2024 – 2027. Vedúci projektu: doc. RNDr. Pavel Bella, PhD. Jaskynné úrovne sú dôležitými markermi vývoja reliéfu, ktoré sa vytvárajú v nadväznosti na stabilnú eróznu bázu a možno ich korelovať s riečnymi terasami, pedimentmi a ďalšími zarovnanými povrchmi. Subhorizontálne časti hypogénnych jaskýň indikujú bývalú lokálnu eróznu bázu, na ktorú nadväzovali vývery hlbinných vôd vystupujúcich pozdĺž strmých zlomov. Projekt na základe datovania jaskynných sedimentov (kozmogénne nuklidy 10Be a 26Al, rádioizotopové metódy U-series, paleomagnetické a magnetostratigrafické metódy) a morfologicko-morfometrických analýz jaskynných úrovní v neotektonicky a geomorfologicky odlišných krasových oblastiach prispeje k súbornejšej a presnejšej rekonštrukcii vývoja reliéfu Západných Karpát, najmä od neskorého miocénu (hlavné fázy planácie reliéfu a zahlbovania riečnej siete, paleodenudačné rýchlosti odrážajúce vplyv tektoniky alebo klimatických zmien na vytváranie jaskynných úrovní, rozsah a intenzita zahlbovania dolín, odlišnosti vývoja povrchových a podzemných riečísk v krase).

VII. - Prehľad aktivít v organizovaní vysokoškolského vzdelávania a tvorivých činností

VII.a - Aktivita, funkcia VII.b - Názov inštitúcie, grémia VII.c - Časové vymedzenia pôsobenia
Externý školiteľ doktorandského štúdia v odbore Fyzická geografia a geoekológia - vedenie dvoch úspešne obhájených dizertačných prác Univerzita Komenského v Bratislave, Prírodovedecká fakulta od roku 2011
Člen komisie na habilitačné konanie v odbore Fyzická geografia a Environmentálna geografia, člen komisie na dizeratačné skúšky v odboroch Environmentálna geografia, Geoinformatika a diaľkový prieskum Zeme Prírodovedecká fakulta Karlovej univerzity (Praha, Česká republika), Prírodovedecká fakulta Ostravskej univerzity (Ostrava, Česká republika), Prírodovedecká fakulta UK v Bratislave, Prírodovedecká fakulta UPJŠ v Košiciach 2011, 2017, 2019, 2022, 2023
Predseda štátnicovej komisie - geografia, druhý stupeň (Mgr.) Pedagogická fakulta Katolíckej univerzity v Ružomberku od roku 2015
Zástupca vedúceho Katedry geografie Pedagogická fakulta Katolíckej univerzity v Ružomberku od roku 2016
Zabezpečovanie náučných geografických exkurzií, prednášková činnosť v rámci Týždňa vedy a techniky Pedagogická fakulta Katolíckej univerzity v Ružomberku od roku 2006

VIII. - Prehľad zahraničných mobilít a pôsobenia so zameraním na vzdelávanie a tvorivú činnosť v študijnom odbore

VIII.a - Názov inštitúcie VIII.b - Sídlo inštitúcie VIII.c - Obdobie trvania pôsobenia/pobytu (uviesť dátum odkedy dokedy trval pobyt) VIII.d - Mobilitná schéma, pracovný kontrakt, iné (popísať)
U.S. Environmental Protection Agency, Region 7 Kansas City, Kansas, USA 7. - 16. 2. 1998 študijný pobyt „Environmentálna ochrana krasu a jaskýň, využívanie geografických informačných systémov v ochrane prírody“
Kyushu University, Faculty of Sciences Fukuoka, Japan 20. 1. - 10. 2. 2002 JICA, študijný pobyt „Environmentálna ochrana krasu a jaskýň“
Kyushu University, Faculty of Sciences Fukuoka, Japan 10. 11. - 3. 12. 2003 JICA, študijný pobyt a prednáškový workshop „Geomorfológia a environmentálna ochrana krasu a jaskýň“
University of Sydney, Faculty of Education Sydney, New South Wales, Australia 28. 9. – 12. 10. 2004 študijný pobyt a špecializované sympózium "Multi-phase, multi-process speleogenesis: impounded palaeozoic karst of New South Wales"
Karst Research Institute Postojna, Slovenia 16. - 22. 10. 2011 študijný pobyt „Morfológia a genéza jaskýň I“
Karst Research Institute Postojna, Slovenia 30. 9. - 6. 10. 2012 študijný pobyt „Morfológia a genéza jaskýň II“
National Cave and Karst Research Institute Carlsbad, New Mexico, USA 22. 9. – 1. 10. 2022 študijný pobyt „Hypogénna speleogenéza“
Gunung Mulu National Park Mulu, Sarawak, Malajzia 28. 9. - 4. 10. 2024 študijný pobyt "Morfológia, genéza a ochrana jaskýň"

IX. - Iné relevantné skutočnosti

IX.a - Ak je to podstatné, uvádzajú sa iné aktivity súvisiace s vysokoškolským vzdelávaním alebo s tvorivou činnosťou

člen vedeckej komisie Medzinárodnej asociácie sprístupnených jaskýň (International Show Caves Association) od roku 2006, člen Vedeckej rady Pedagogickej fakulty Katolíckej univerzity v Ružomberku od roku 2011, člen Múzejnej vedeckej rady Slovenského múzea ochrany prírody a jaskyniarstva v Liptovskom Mikuláši od roku 2018, člen Vedeckej rady Štátnej ochrany prírody Slovenskej republiky v Banskej Bystrici od roku 2020, člen výboru Asociácie slovenských geomorfológov pri SAV od roku 2000, člen redakčnej rady Geografického časopisu (SCOPUS, WoS) od roku 2020, člen redakčnej rady časopisu Slovenský kras od roku 1992 (editor od roku 2008), člen redakčnej rady a editor časopisu Aragonit od roku 1996, člen redakčnej rady časopisu Naturae tutela od roku 2015, člen vedeckého výboru a redakčnej rady zborníka z 18. medzinárodného speleologického kongresu (Savoie, Francúzsko, 2021) - sekcia „Pseudokarst, karst in non-carbonate rocks". Odborný garant vedeckých konferencií "Výskum, využívanie a ochrana jaskýň" (14 konferencií od roku 1997, editor 5 konferenčných zborníkov). Spoluorganizátor 8. medzinárodného sympózia o pseudokrase (Teplý Vrch, 2004), 2. medzinárodného workshopu o ľadových jaskyniach IWIC-II (Demänovská Dolina, 2006), 6. kongresu Medzinárodnej asociácie sprístupnených jaskýň ISCA (Demänovská Dolina, 2010) a 9. medzinárodného workshopu o ľadových jaskyniach IWIC-IX (Liptovský Mikuláš, 2022). Spoluautor nominačného projektu na zaradenie jaskýň Slovenského a Aggteleckého krasu a Dobšinskej ľadovej jaskyne do svetového prírodného dedičstva UNESCO (World Heritage). Oponentské posudky habilitačných prác (Prírodovedecká fakulta Univerzity Karlovej v Prahe, Prírodovedecká fakulta Univerzity Komenského v Bratislave) a dizertačných prác (Prírodovedecká fakulta Univerzity Komenského v Bratislave, Prírodovedecká fakulta Ostravskej univerzity v Ostrave, Fakulta BERG Technickej univerzity v Košiciach, Fakulta geografie a geológie Jagielovskej univerzity v Krakove). Zlatá medaila Slovenskej speleologickej spoločnosti za prínos k vedeckému výskumu jaskýň (2022).

Dátum poslednej aktualizácie
2024-12-11